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A b s t r a c t

The now-famous Majumdar-Papapc  trou exact solution of the l;instcin-
hf axwell equations describes, in general, N static, nlaxilnaily  charged
black holes balanced under mutual gravitatic,  ual and electrostatic inter-
action. When N = 2, this solution defines th[ two-black-boll>  spacctirne,
and the relativistic two-center problem is the problem of gcod[sic  motion
OIL this static background. Contopoulos  and a number of other workers
have recently discovered through numerical c~periments  that in contrast
with the  Newtonian two-center proh]em,  whert, the dynamics is corn~)lctely
integrable, relativistic null-geodesic motion o]t the two black-hole space-
time exhibits chaotic behavior. Here I identify the geometric sources of
this chaotic dynamics by first reducing the ~,roblem to that of geodesic
motion on a negatively curved (IVle]nannian)  surface.

● Sublnittect to Physical Review D
I



1. T h e  Maj~lllldar-PaI]aI]etrot] s o l u t i o n

‘lihc genera] Reissner-Nordstronl  Inctric

for a charged black hole of mass A4 and charge Q takes a I)articular]y si~nple

forln when the black hole  is cxtrenlal with IQ I = M :

g= -“(+zdt’+ (1-3 --2dr2-’ ‘2(do2+si’70dd2)  ~ ‘1)
lU the isotropic coordinates ? = T – M, Eq.  (1) can be written suggestively as

‘= -(l+” a-2d’2+ (1”’”$)2(’3)” (2)

where
(3)!, = d# + F2 (df)2 +  si]]2 @ d@2)

denotes  tllc flat Euclidean metric. ‘1’be metric function 1 +- M/F appearing in

l+;q. (2) has the form of a harlnonic  function ill Eucl idean  space, and, ~nirac-

ulously, whcI) 1 + fi4/F is replaced with a more general harlliollic function the

nlctric k;q. (2) still remains a solution to the F;il~s~eir~-kfax}vcll equations ([1- 2]).

More precisely, as first discovered by M ajumdar and Papapetrou, the metric

g = –u-2r-lt2 + U2  (dx2  -I d y2  +-dz2) (3)

and the electromagnetic potential Ad given by

arc a solution to the source-free Einsteiu-hflaxwcll  equations as long as the func-

tion U = U(X, y, z) satisfies Laplacc’s  equation in flat space:

5 U,kk = U,r= -t- U,yy + iJ,2z = o (5)
k=:l

Note that this solution is static (~/dt is a tirnelike Killing vector), but in general

has no other symmetries.

It was first realized by IIartlc and Hawking ([3]) that with the choice

(6)

for the potential U(X, y, z), the Majumdar-F’al)apetrou solution  represents ~

cxtrcmal black holes, where the i’th black hole, stationary at the fixed  position

F = Pi, h a s  m a s s  M i a n d  c h a r g e  lQil  n h4i. All charges Q1 have the same

sign given by the sigu  chosen in Eq.  (4), which ensures that the holes remain in
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equilibriu~u,  balanced under mutual gravitatioll:d  attraction a!ld  electrostatic

rel~ulsion.  ‘1’he apparent singularity in U(X,  y, z ) [and tllcrcforc  in the metric

l;q. (3)] at the positions F = F’i is the usual coc,rdi~late  s ingular i ty  associated

with stat,ic. coordinates at an event horizon, ludccd, the surface area of a slnall

coordi[iate s p h e r e  {i = const., IF – -  Fi( = c} alound F == ;; apl~roachcs  t h e

cx~)cctcd  surface area of the horizon:

[(
:)

liln (U247rlF–  F~12) == 4 7 r  litn
JVfi

1+ ~-F,l ) ]
—+0(1) l;- ;:[2F—. F, F- 7,

= 47i_A4i2 , (7)

arid  the lnet,ric can be extended analytically into the interiors of the black ho]cs

(into “~legat,ivc  Ii’– Fil”) using Kruska]-like  coordinates .  AS in the single black

bole case (the cxtr-cmal Reissner-Nordst rom SOIU( ion), the inter ic)rs of the black

boles house true physical singularities where spacetime curvature blows up.

2. Chaos in the two-black-hole  spacetilne

When IV == 2, the spacetirne givrn by Eqs. (6) and (3) rcI,rcsents a rela-

tivistic analogue to the two-center configuration in Newtorliau gravity, in which

the .?Jcwtonian  gravitational field is generated by two poitlt ]nasses at fixed

positions (i.e., tl[e  mutual gravitational interac[ ion of the ~uasses  is ignorccl).

Numerical investigations of null geodesic rnotio~l  on this twmblack-hole spacc-

time by Contopoulos and coworkers ([4]) have revealed that the geodesics exhibit

chaotic behavior in the vicinity of the two centerti. More specifically, Contopou-

10S studies null geodesics whose spatial rnotic,n  is confined to a two-dilncnsiona]

syrn~netry plane; assuming the black holes are positioned along tbc z-axis, this

plane is typically the surface {z = 0} (SCC Fig. 1 ). Numerical int cgration of the

]
z

J4,0z=+l

I- .
I

[’--l- - _- symmeh  y am

Y ’

Figure 1. Contopoulos’s  (and also this paper’s) analysis of the two-black-

hole null-geodesic flow is confined to those null geodesics which lie in a
two-dimensional surface of symmetry such as the yz-plane {z . O}.
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null ,gcodcsic  cqrrations  then reveals that for gco(lesics that,  apllroacll  tlie black

IIolrw fronl ir,finity, it is essentially i~npossihle  to predict whether tile orbit will

plunge into the first hole, or the second one, or escape back out to infinity; in

other words t,lle qualitative behavior of the orbits near tile black  holes exhibits

cflectively  stochastic features. lhis places the relativistic two-c[’nter  motion in

surprising cent, rast with the corresponding Newtonian  proble]n (i. e., the motion

of a lnassive test body in the gravitational field of two fixed ccllters) where the

dy~la~~lics iskIlowl~to  bccor~llJletely  intcgratJle(a classical result that goes back

to the work of Jacobi and l,iouville).

In this paper 1 will argue that the chaotic behavior of tlIc  null geodesic

flow has its roots in the spatial geometry of the two-black-hole spacetime, and

1 will do so by first showing that the dynalnics of this flow car! be reduced to

that of ordinary geodesics on a negatively curved Ric~nannian surface.

3. Gcolnctric analysis of the two-l) lack-hc)lc null gec)desic f l o w

1 will  rely on the well-known “Fermat’s principle” in its relativistic for-

Inu]ation ([5]). Fermat’s principle states that if J’f = N. x X is a static spacetilne

with IIletric

g n gOO dtz + c3Jh ,

where  X is a 3-nlanifold,  and goo < 0 is a smooth function and ‘S)h is a Riemam

nian nlctric on X (both independent of f), then tile null geodesics of (JYI,  g) when

projected onto X are precisely the Rielnannian F,eodesics  of th( 3-gco~netry

()x, ::)~ ;
-900

(8)

and, furthermore, the aftlne parameter (i. e., the arc length) alo~lg the projected

geodesics in [X, t31h/(- goo)] is precisely the static time coordi)late t measured

along the null geodesics in (M, g). In words that would have sounded familiar to

Iermat, the principle states that light follows till path of shc)rtcst (or extrelnal)

travel time between two given points ill 3-space

In the multi-black-hole solution given by Eqs.  (3) and (6), lcrmat’s prin-

ciple shows that null geodesic flow in the asyloptotical]y  flat exterior region

(outside the event horizons of the black holes) is equivalent to the Riernan-

nian geodesic flow of the 3-geometry (Z, h), with the 3-maI(ifold X given by

x = R3 \ {IV points}, and with the Ricnlanlliall metric h on 1; given by

(S)h
}L:—. Q2(dx2  + dy2 + dz2)  ,

–900
(9)

where

(
N

)
2

Q=U2=
? M~

wL~.q
i=.1

(lo)

In the two-black-hole spacctimc, 1 call  assume without loss of generality that

the holes arc pc)sitioned along the z-axis at F1 = (O, O, 1) and F’2 = (O, O, –1)
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(see Fig. 1). It is obvious that any two-l)lane colIl aining the symmetry (z-) axis

is a totally geodesic sul)manifold of X. As I will focus on null geodesics which

lie (spatially) in such a symmetry plane, which 1 can assume to be the y~-plane

{.r =. O} as in Fig. 1, by Fermat’s principle the null geodesic flow 1 need to study

is equivalent to the geodesic flow on the twc)-di]llcnsional Rirxliannian  surface

(S}/), where S n R2 \  {(0 ,1) , (0 , -1)} ,  and

h = W(rir)  + C@ ,

( )
2

Q = 1 +
i<.==r~ +  7,2 +*; .; ’’fi; ‘

(11)

(12)

Note that the geodesic flow of (S, h) corr.espo~,ds,  in the origirlal spacetirne, only

to the null geodesic flow in the exterior of the blilck  holes; null geodesic motion

ill the interior regions is not c.ovcred by this corresj]onde]lcc. ‘1’his point will

become clearer after a closer look at tile topolor,y and lar,gc-sca]c  geometry of

(S, h):

Glol)al geometry of the Ricunanniaxl  surfate (S, h)

I,ook  closely at the behavior of the metric h near the centers, e.g., near

F == F’l = (O, 1). Introducing }hclidean ~,olar  coordinates (R, d) centered around

71 = (O, 1) (i. e., R ~ [F --- Fl l), I can write the co]lfornlal factor f) in the vicinity

of PI as

and similarly I can write

( )h  = 1 + ~ + ~1 +  O ( R )  4  ((1R2  + A? do?)

(13)

(14)

Now introduce a new radial coordinate p = Ml 2/R. Then Eq.  ( 14) becomes

}1 =, ( ) 4 M14
1  +  $ + ; +0(;) -@@l p~rloz)

“ (1+o(;))4(d~2-’~2 d02)
(15)

A sirni]ar analysis can be carried out i~l the vicinity of the other center F = 72

with the same conclusion, namely that what looks like a singularity at F = F1

(and similarly near the other center) is in fact an entire a.s.ylnptotically flat

Euclidean region squeezed into a small neighborl,ood  of the “point’ ) F’l = (O, 1)

in the coordinate system (y, z). The global geometry of the surface (S, h) is

then as depicted in Fig. 2 below, with three asymptotically flat regions, one at

F A cm, and two others at each of the centers F –, F1 and F’ –~ F2. As a corollary,

the surface (S, h) is geodetically cornplcte.  ‘lhis is expected, sirlcc  by Fermat’s

principle the afflne  parameter (i.e., arc length) along the geodesics of (S, h) is

the static time coordinate t measured along the rlu]l geodesics of the two-black-

bole spacetirne, and static time diverges to infinity at the event }lOrlZOnS  of the

black holes. in other words, a null geodesic in the two-black-bole spacetime falls
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into the i’th black hole if and only if the corresponding lticInanlliarl geodesic ill

(S, h) escapes into the asymptotic rcgiol,  F- ~~.

/

—-—. \
—-———————  — .--—7’?–+  00

M, M2

L“,. #iBIP..\ ..+.
‘, ,, ‘, ‘

‘! I ,’‘i , )/A=7~2i;-”’-~__ ———— .-.
Figure 2. The geometry of the Riemannian manifold (S, h) in the large.

Note that this is rmf the actual geometry of the surface {z = O} in the

physical metric g on the two-black-hole spacetime, but, rather, it is the

physical geometry with an extra conformal factor introduced in accordance

with k’ermat’s  principle. In particular, only the asymptotic region T: + m

corresponds to the usual asymptotic region in the physical s.pacetime; the

asymptotic regions F + Fi exist because of the singular behavior of the

static time coordinate t at the event horizons of the black holes. Accordingly,

a null geodesic in the two-black-hole spacetime falls into the i’th black hole

if and only if the corresponding Riemannian  geodesic in (S, h ) escapes into

the asymptcjtic region F + F’z.

.

I.ocal gconlctry of tllc Ricxnaunian surfac{: (S, h)

‘1’hc intrinsic geometry of a two-dimensio]]al  Rien]anniatl manifold in the

small is determined completely by the Gaussian curvature K (which is one-half

the scalar curvature R). With the metric writttn in the co]lfc,rmally  flat form

I;q,  (1 1), A’ is given by

K = –i: A(logfl) (16)

—.. #i [L?3 (( Q-’),,,+ ( Q - ’ ) ) , . )  -  Q,,’ - Q,z’]  , (17)

where A denotes the scalar I,ap]acian  in the flat metric dy’ -I dz2,  It is straight-

forward  to  cornputc  K for the surface (S, h) lIy s imply  subs t i tu t ing  Q f r o m

Eq. (12) in Eq. 17). ‘l’he result is a comp]icat  ed expression, not particularly
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(. ,

illunlinating in its analytic form (which therefor( I will I’:ot },v~llrr  LU give). A

1,101 of the curvature K as a function of the coordinates y, 2 is given in l“ig. 3

(where I chose  uni t  masses  J141 = A4z = 1). It is apparent thfit A’ is strictly

IIegative throughout S (and this is true for all  masses A4 1 , JM2 > O). Iloth

far away from and near the centers (where geol[]etry is asy~llptotica]ly  flat) K

apl)roaches zero from below as expected (see Fig.  2).

tK

““’\J(’”’
Y

surface (S)h) asFigure 3. I“he Gaussian curvature A’ of the Riemannian

a function of the coordinates (y, z). The masses are chosen to be Ml =

.Ifz = 1 for this plot; but the qualitative features of K are identical for

all positive masses. In particular, A’ is strictly negative throughout S, and

approaches zero in all three asymptotic regions, i.e., both as i’ + ca and as

T74Fi#i=l  ,2.

4 .  C a n  c h a o s  in the two-black-llcjle spacetimc he exl>lainecl  solely by

tile negatively curved geomc%ry  of (S, h)?

In a Riemannian  manifold of arbitrary dimension n, negative sectional

curvature causes neighboring geodesics to diverge exponentially ([6,7]). Recall

the derivation of this well-known result: If Z denotes a vector field along the

geodesic T, Lie transported by a congruence of IIeighborillg geodesics, then

V7* VT* z = &* ~ -f. , (18)

w h e r e  Rxy denotes the curvature operator VX VY – VYVX -- VIX,Y1. Along

-y, an infinitesimal neighboring geodesic can then be defined abstractly as any
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solutic III of tile “Jacobi equation;” a cfifrcrential  fquatioll along 7 derived froln

Itq.  (18). in a ~)arallcl-~]rc~l~aga~cd  basis {Ek}  along y such that, 1;,, n -y. , J a -

cobi’s cquatioll is
d2Za——— - ]ia,, b,, ~b ,dS2 = (19)

where  s  i s  the  affinc pararnctcr. Fc)r a two-d irn(nsiona]  Rietnal\nian lnanifold

w i t h  G a u s s i a n  (E sect ional)  curvature  A’ = R1212, and witl  I Z ~: Z] , Eq.  (]9)

becolt]es
rig z..— --A’ x
ds2 =

(20)

Assurnillg  Ii’ < 0, and assuming the afhne parameter s is s~nal] compared to

[l(/(dA’/ds)[,=ol, l;q. (20) has generic solutions c,f the for~n

z ( s )  - ‘(s)ex’)(r-ds’) ‘ ‘@)ex’)(-/s-ds’)  1 ‘2])
wllcre A(s) and B(s) arc slowly-varying amplitudes. It is clear that negative

Gaussian curvature Ii results in an exponeutia Ily diverging Z(s) in general,

Wllell Ii(s) is bourlded frornabove byallegativc  number,  };qs.( 20) (21)  irllply

that ~ (as an c)rbit  inthcgcodcsic flow) tlaspositiv  eI,ia~JllIlove  x~)ollellts, Ohvi-

ous]y,  exponential instabilityof orbits and positiv~ Liapu~lov  exI]olIcnts are suf[i-

cicnt conditions for the J)rcscnce  of “sensitive deIJendcnce on initial conditio]ls,  ”

ttlckcy ingredient of chaos. But are these criteria sufficie~lt  to dcrllollstratc that

chaotic Lcllavior  is indeed present?

‘1’0 investigate this question, let nle briefly consiclcr  two cxalnples from

N e w t o n i a n  gravitatiorr. Recall that in classical mechanics, for a Ilarniltoniau

systc]n with I,agrangian function

mot ion  on  a  cons tan t -energy  (~ constant- Ilamiltonian) surface {11 = E} is

cquivalc]lt to g e o d e s i c  rnotio]l on a Riemannian manifolcl,  lla~tlrly  on the sut>-

r]lallifold {V(gi) < E} of  coufiguratiorl s p a c e  e q u i p p e d  w i t h  t}lc Rielnannian

I[lctric

(22)
j,k

( l l a n l i l t o n - J a c o b i - M a u p e r t i u s -  princi~)le;  see  [6] ) .  Accordingly ,  ill rrlatl,c-

matical analogy with relativistic gravitation, so also in Newtonian gravity test-

particle dynarnicshas  a gcolnetric description in terms of geodesic lllotion. In

particular, motionin the Kepler and Newtonian two-center prol,lems can both

bc described in terms of geodesics on a two-di]]lensional Ricmianniau surface,

and this description

cxccpt, of course, in

earl be put in exactly the same form as ]n Eqs. (11)-(12),

the Kepler case the confornlalf  actor !2 takes tfic form

()
1/2

f)= Ei~ , (23)
r’

and ill the Newtonian two-center problem it has the forrrl

( )

1/2
Q = E+- –-~~-.-+ –fi:’— .

[F-;][ [r7’-r7’l

7
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I’lots of the Gaussian curvature  of  the metr ic  g~; [I;q.  (22)]  for  the  (p lanar)

Kcl)ler and Newtollian  two-center  problems arc shown  ill l:ig. ‘1. III both plots,

E is chosen to be E = –-0.1 (L’ is chosen negative so that tilt> geodesic flow

ctcscribes the motion of bound orbits),  alld the lrlasses are M :. lfl = A12 = 1,

‘1’llcrc arc no surprises: As  botb syste~tls  are co~lipletely  iritegrab]e  with stable

closed orbits, one would not expect negative curvature to bc tllc dominan t

gcolllctric feature. lndced, in the Ke},ler  case  curvature  is  s t r ic t ly  posi t ive ,

and in the two-cmlter case it is mostly positive, with a s~nal] llcigllhorhood  of

negative curvature ill the vicinity of the centers; t his small region  of negative K

corresponds to directional instabi]itics the orbits have while Ijassillg in between

tllc two centers of attraction, [Note that in contrast with the black-hole surface,

tllc cclltcr(s) in the Newtonian case are ge~luine  singularities of tlie metric g~; ;

IIowcvcr,  these are not curvature singularities (A’ remairls bou]lded as F a Pi),

but ratllcr conical singularities with a nlass-indel,cndeut angle deficit T.]

fA’ t h’

z
o

~
1.

0 .
0 .

- o

Y
-’”’\g’”’

Y

Figure 4. No surprises in Newtonian gravity for the connection between

negative curvature and chaotic geodesic motion: With completely inte-

grable geodesic flows, Gaussian curvature c)f the metric gfi [Eq. (22)] is
positive for both the Kepler problem (plot on the left; strictly positive 10

and the Newtonian two-center problem (plot c)n the right; A- positive except

in a small neighborhood of the centers).

So far the association between ~legative  (;aussian curvature on the one

band and chaotic behavior of the geodesic flow on the ot}~er appears to hold

within the context of the three examples 1 discussed, Consider l however ,  one

ruorc exa~np]c,  this time the geodesic flow on tile Rienlannian surface S with

only onc extremal (Reissner-  Nordstrom) black-hole;  in other words with metric

h .givcn by Eq.  (11) where Q = (1 + A4/r)2.  The Gaussian curvature K of the

resulting geometry is plotted in Fig. 5 (with M : I 1). As in the two-black-bole

case (Fig. 3), A’ is strictly negative everywhere, But the geodesic flow on this
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surface is a co~nplctc]y  integrable systct]l (ang;ular lllolnclitulll provides the scc-

olld  integral of motion). Clearly, then, negative cllrvaturc (scllsitivc  dcpc]ldcncc

o]i initial conditions) is JJOt sufficient for chaos: 11) fact, the uniqur closed  (unsta-

IJIc) geodesic in the geolnetry of l’ig.  5 has strictly positive IJiapllflov  exponents

as an orbit in the flow, so even the prmcllce of positive I,iapunov exponents does

Ilot  always i]np]y chaotic behavior.

‘2’\J/2’
Y

Figure 5. l“he ~iemannian surface S with the metric corresponding to

the null geodesic flow of a single extremal Keissner-Nordstrom  black hole

has strictly negative Gaussian curvature, and the Liapunov exponent of its

(unique) closed geodesic is positive. But there is no trace of chaos here:

with angular momentum as the second integral of motion, the geodesic

flow of this surface is a completely integrable Hamiltonian system.

As others have done before, 1 would like tc, argue in this paper against the

widespread practice in the physics literature of identifying chaos with merely

the prescncc of positive I.iapunov  exponents . ‘1’his is especially ilnportant i~l

relativity (whine there is no canonical choice for dynamical ti[t[c) si]lce  whether

or not a l,iapunov exponent is positive depends crucially on the nature of the

time parameter used in defining the exponent. l]! the next scc.tioll  I will describe

a precise for~nulation for “chaos” [due to S. Willard ([8])] which 1 believe is

particularly useful in relativity since it does not depend scnsitivc]y on the choice

of ti~ne.  III the following section (Sect. 6), 1 will demonstrate that null geoclesic

flow in the two-black-hole spacetirne is chaotic according to this for]nulation.
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5. A ~Jrccisc formlllation of  chaos

Cc]ltral to our intuitive ullcterstallding  of chaotic behavior is the llotion of

“sensitive ctcpc~)dc~ice 011 illit, ial conditions:” lo]lg-time prcdictio]l of motion in

tllc phase space of a chaotic system is impossible since small initial perturbations

of tllc orbits grow arbitrarily large as the systeln evolves in ti]lle. ‘1’his, of course,

is a vague idea i~l need  of a precise nlathcnnatical for~nulation, a~lcl there exist

various such forlnulations, the concept of Liapunov exponents being one of them.

llowcwer,  t}lc exact co]ltent  of our intuitive notiol,  of sensitive dc~lcndencc  is Ilot

fully captured by the more precise concq]t of positive I,iapurlov exponents. It’or

example, the phase flow {i = z, z E IRn } has positive Liapunov cxllo]lents  along

all its orbits, but, clearly, this is ~lot a chaotic system, and morc cornp]icated

“count ercxalnplcs’) with positive exporlents  cau be found i~i which to discern

that ~notion  is nomchaotic  would not be so cas~.  In order tc, Co]) cludej  on tile

basis of tllc presence of positive I,iapunov exponents) that Chilo$i  is present, it

is ap~)arently necessary to make sure that the divergence of nearby orbits does

not occur silnply bccausc these orbits escape to ‘(infinity” under time evolution

What, is nccdcd to address this point is a mathematical forrl]ulatiou slightly

rllorc sophisticated tharl the concept of l,iapuno\ exponents.

IIem, then, is nly  favorite “definition” of c}, aos, adopted frortl  [8]: Restrict

attelltioll, for definiteness, to phase spaces M with rnctrizahle topology,  A

dynaltlical syste~n  (M, PI) is chaotic if it contai]ls  a “chaotic i]lvariant subset,”

that is, a subset A c M such that:

(Cl) A is co~n~)act, and itlvariant under P,, i.e., P,(A) c A Vt E. E-!.

(C2) A has sensitive dependence on initial conditions.

(C3) A is topologically transitive.

The precise ~neani]lg  of condition C2 (sensitive dependence orl ir,itial conditions)

is the following: I’ix a distance functiou p on M compatible with M’s topology.

Condi t ion  C2 holcls  if there exists a fixed 6>0 such that for al] r E A and for

every  ne ighborhood  U c A of x open in A, a poi~lt y E U and a t > 0 can be

found such that

P[9t(*), W(Y)] > ~

In other words, given any point, z G A, no matter how s]~lall a neighborhood

U of x 1 choose 1 can always find points y E (J n A W11OSC  orbits eventually

divcrg.c  away fro]n that of z under the flow Vt. Since A is compact, this notion

of scmsitivc  dependence on initial conditions is independent of t}lc choice of p.

‘1’opo]ogical  transitivity of A (condition C3)  mearis the fc,llowing:  for every open

U, V c A there exists a t E 02 such that P,(U) f) V # 0 .

llccausc the problcrn 1 study in this paper involves chaos “localized” in

a boundccl region of an asymptotically flat ge(~metry  (i.e., ill the vicinity of

the b lack  I1oIcs), I will need to use a slig}]tly  gcncralizcd version of the above

definition; ]ny  generalization is designed to be adapted to the essentially time-

asymlnctric nature of the problem (i.e., null geodesics approaching the black-

hole rcgioll from infinity and plunging into the holes after exhibiting chaotic

10



bcllavior). Naulcly, call a subset A C M a “chaotic future-ill~rarialit set” if

(11’C1) A is co~tlpact) and futur-e-invariallt  under P,, i.e., P,(A) c A t’t >0.

(IJC2) A has sensitive dependence on initial conditions (definccl  as before)

(1’C3)  A is topo]ogically  future-transitive.

Note that topological transitivity of A as definec] above (corlditioll C3) ensures

essentially that the flow is topological]y  “mixi])g; ” this condition is designed

to rule out situations iu which A can be decolJiposed into lllultiple c o m p a c t

invariant sets. Clearly, topological tra~lsitivity would be an inappropriately

strong colldit,ioll  to impose on a subset which is oIlly  future-irlvariarlt. ‘1’herefore,

I IIlodify  this condition so as to demand that the flow on A is lllixillg olily  in the

future direction, lnorc precisely, 1 define A to be tcjpologically  future-transitive if

there exists a til~lc 7’>0 such that for every pair of open sut)sets [J, 1’ C 97(A)

tilnes t > 0 and s > 0 can be found such that }o~(iY) fl P,(V) + 0. Clear ly ,  a

chaotic invariant, set is also trivially a chaotic future-invariant set. ‘1’lle definition

of a chaotic systcm can now be generalized to include any dyllalnical syste]o

which contains a chaotic future-invaria~lt subset.

Notice that this definition for chaos makes no refereltce to I.iapunov  ex-

ponents; in fact, the rate of divergence of nearl]y orbits is not constrained i~i

ally way by tile prec ise  not ion  of  sens i t ive  dc~)cndcnce  c)Il illitial conditio]ls.

‘1’his fact makes the definition especially  interesting for applicatior)s in General

Relativity: sensitive de])endence as defined abol e holds for onr choice of time

function if and only if it holds for any other, as long as two choices of tilne are

always re la ted by a I1lorloto~le-irlcremir!g  diffeo~llorphis~ll  frcjm the real axis Ii?

onto R. Of course, in general a mathematical [Definition is useful only if it is

the subject of thcore~]ls,  and there do exist theorems which delllolwtratc that,

many of the usual properties of chaotic systems can be derived from the above

co~lditiolls  (31- (33 (or FC1--FC3); I will not discuss these results IIcrc, hut direct

the reader to the literature, especially as listed ill [8]. Instead 1 ~vill turn now to

tllc drxnonstration  that the geodesic flow on the two-surface (S, h) (which, as 1

discussed in Sect. 3, is equivalent to the null geodesic flow of the two-black-hole

spaceti~ne)  is chaotic according to the formulation  of chaos 1 jllst described. It

is il])portant to note IIere that ot}ler  studies (see [9]–[10] and references therein)

have carried out this demonstration by searching for various more direct signa-

tures of chaos in the two-black-hole geodesic flow; for instance, the existence of

hyperbolic cycles and transverse hcmoclinic or})its  in this flow is discussed in

[9], and the presence of positive Liapunov  exponents is explored ix, [10].

6. “Proof’ of chaos in the two-black-hole null geodesic flow

‘1’hc geodesic flow on the Riemannian surface (S, h) call  be described as

a II,amiltonian dynamical system, with phase space ?vt :: the urlit co tangent

bundle of S, i.e.,

M = 7\*S S {(Z)p) E 1’” S I I[pll := habpap~ = 1} , (25)

11



a n d  wit])  the  llalniltollian f u n c t i o n  ~l(z,p) = ~}labpap~. I will dcrlotc t h e

gcoc]csic  flo}vo117~  Sbyt~le  usual sylllbol pt. ls]lowcdillsect.~tllat (S, h) has

strictly negative Caussian curvature, and recalled ill Sect.4 ~l]at Ilegativc curva-

t~lreca~lses ex~Jo~Iclltial  divergence oft}leorbitsi]l thcgeodmic flow. Now, ifthc

surfidce  S were  compact, ] could then siinp]y defilie  my invariantsrt A to bc the

c~ltirc  pllasc space M = 7~S: so chosen, A is co~ljpact  WIICU S is, and bccausc of

the negatively curved geometryof (S, h), A hasscnsitive dependence on initial

conditiolis, i.e., satisfies condition C2 as fornlulated in tllc previous scctio]l. It

is not difficult to S})OW also that A is tol)ologically  transitive under the geodesic

flow; tbcrcforc, if S were compact, all conditions C1-C3 for a chaotic invariant

subset would bc satisfied by this simple choice of A, i.e., the cr[tirc phase space

would bc a chaotic invariant set. lndecd, it is well known  that geodesic flows of

colllpact ~nanifolds with negative sectional curvature arc chaotic. (’1’hesc flows

in fact satisfy every criteria ever invented for chaos: they llave~)ositivcl,ia})~lllov

exponents, positive entropy, are mixing, are K-flows, .. See [7] for an exten-

sive  but readable analysis of this classical problcrll.  ) ‘1’}ic  ll{]~lco~l]~]act~less  of the

two-black-hole Ricrnaunian surface (S, h) is the], the main diflicu]ty 1 need to

ovcrco]nc in dc~nollstrating the existence of a chaotic (future-) invariant subset

in the (noncom pact) phase space 7~S.

1 will now construct a closed subset A c l~S which I clairr] is a chaotic

future-irlvariarlt set for the geodesic flow. q’llat A i s  c o m p a c t  and futurc-

irlvariarlt  will bc evident froln its construction, however, 1 ~vill not be able to

prove that A satisfies conditions IC2 and 1C3.  To prc,ve these cc)nditions,  it

would bc sufficient to colnbine  the negatively curved geometry c)f (S)h) with the

intricate topological structure that A appears tc~ have; bowcvcr,  1 cannot prove

that A indeed ha.sthis intricate struc.ture. As isllsually the case with studies of

chaotic bcbavior, tbc evidence for this structure is exclusivc]y nutncrical. Some

of this numerical evidence 1 will present here, and more of it can be found in

thclitcraturc, e.g., in [4] and [10].

First ddinc subsets 1’ 1, 1’2 and 1’ of the IIhase  s~,acc T~S as follows: ~:

is the set of all points irl 7~S which fall into the i’th black bolt as t —~ cm, i.e.,

I’i E {771 E~~Sl F[~~(7Tt)] -+ FiaSi --W}, (26)

and I’ is the set of all points which escape to the asyrnptotical]y flat region

F=. cm as t + m, i.e.,

1’ = {7n E2’yslr=’[pt(m)] +mast–+cm}  . (27)

Sirlce  t,hesc  subsets consist of points (z, p) such ~hat  the geodesic starting at z

with initial tangent vector p eventually escapes tc) one of tile three asymptotically

flat regions of (S, h) (see Fig.2), it is clear that both the I’i and ~ arc open

subsctsin  7~S. Also (and this will beirnportarlt below), it is clear that 1’, 1’1

a]ld  1’2 arc mutually disjoint subsets, i.e.,

rnri:=r1nr2 =0.

Now define A as the closed subset

A ~ col]lplenlent  (1’ U rl U 1 ’2) = (1’ U 1’1 U 1’2)’ ; (28)

12
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A is the set of all poin ts  which  do  ~lot cscapc to any asyjnl)tot,ic region as

t ~ cm, i.e., the set of all f u t u r e - i m p r i s o n e d  (e.g., periociic  or quasi-pcriociic)

orbits of t,hc geodesic flc)w. ‘1’his is obviously a future-invariant sut)sct, but it is

not, necessarily compact (unless ali inlprisonc(i  orl)its are cicxsed gcocicsics,  which

is I]ot the case as nulnericai studies shc)w).  10 cut A down to a colllpact size,

introduce a compact subset l) c S as foliows  (see Fig.  6): Draw a circle 6! in the

aSylll})tOtjCd]y fltlt  rCgiOll  ~ ~ co which  enclosm both biack holes,  and draw

circles ~1 and Cz in the asy~nptotic  regions F – ~ 7:1 and F —, ~~ which  enclose

the black holes 1 and 2, respectively. Choose these circles large enough so that

if ti denotes the outward normal to ~ and ~i, a geodesic T wtlich  crosses any

one  of the circics in the outward direction [i. e., with h(y. , 77) J O] escapes to the

corresponding infinity (and thus never crosses f! or ~i again). lly asymptot ic

f la tness ,  it is clear that such circles C? atld Q cart bc fourld  (see  l’ig.  6). Now let

1} c S bc the cor~i~)act region bounded by the circles, in other words, define  D to

bc the u~liquc  collllccted co~nponent  of S\(~U~l UC2) sucl) that d]) = E!U~1U~2.

‘1’hcn pu t

A=A~l~D. (29)

So constructed) A is clearly both corn}) act (a closed subset of a co]npact  set)

allci f u t u r e - i n v a r i a n t .  1 c]ai~n that th is  A  c T~S is a cl}aotic  fllt~lre-illvariallt

subset for the gcwdcsic  flow on ~~s.

“)e 2-
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Figure 6. Construction of the compact set D c S used in defining the com-

pact future-invariant subset A C 7~S [see lq. (29)1. The circles ~ and e:

are chosen large enough so that any geodesic crossing them in the outward

direction never comes back (it escapes to the corresponding asymptotic

infinity). The subset l) is the compact connected region bounded by the

three circles.



As 1 ~ncntioned above, 1 am not able to ]Irovc  that A satisfies the com

clitions I(’C2 and 1’C3  of Sect. 5. Ncvertlleless,  a great  deal  (of i[lsight into tile

structure of A can be c)btaiued by nunlmically integrating tht:  geodesic equa-

tions on (S,  h). l,xtensivc numerical studies of this kind have beret reported in

[4] and [10]. Although 1 will base the following ol,smvations on ~tly own minimal

investigation of the (null ierical) structure of A, these observations arc supported

by the more extensive numerical evidence already published in the literature.
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Figure 7. Closed (or almost closed) orbits ill the geodesic flow on (S, h).

The top four plots are drawn with unit masses Ml = MZ = 1, and the

two plots at the bottom of the figure are drawn with masses A41  = 2 and

M 2 = ]. As the orbits get more complicated (and therefore their periods

become longer), numerical instabilities set ill as soon as or before the full

shape of the orbit becomes apparent (as happens in the middle two plots).

Recall that all these orbits are unstable because of the negatively curved

geometry of (S, h).
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llccausc of the exponential instability of iill orbits ill the gmdcsic.  ftow,

it is clear that, a direct computer proof of tile existence of a fllt~lrc-i~IllJrisol~ed

orbit (lying in A) is imr)ossiblc: any real orbit ill the co~nputer  will eventually

diverge away fro~~l A because of numerical instabilities, even if initially it lies

in A. So it, ~night appear at first that by relying. on nurllerical  integration it is

i]tlpossib]c to even prove that A is nonempty! ‘1’his is ~]ot the case, however;

nurllcrical integration does yield an indirect proof that orbits which  lie in A

exist. More precisely, consider those orbits wh<lse starti]lg poillts arc on the

z-axis and whose i~litial  (unit) tangcmt vectors are entirely in [Ile y-direction.

[See l’ig. 7; all or-bits plotted in Fig. 7 are of this kind. Also, although the orbits

plotted in Fig. 7 arc (mostly) with unit masses flfl = 1142  =. 1 and (some) with

masses A41 = 2, 142 = 1, similar behavior is observed with all IJositive  choices

of Ml , M 2.] in the following, I will not make any distinct ioli l)etwecn points

on tile z-axis and initial conditions for the orbits in 7~S; the initial-tangent-

vcctor part of the initial conditions is fLxecl thr(,ughout to be a unit vector in

the y direction. Now, l)y numerically integrati~lg  these orbits into the future,

the following features can be observed: (i) Consider any ope]i  irltcrval  of initial

conditions (starting points) on the z-axis lying in the vicinity of the centers.

No matter how srna]l this interval is, there are always points irl it which belong

to IT, 1’1 and 1’ 2. (ii) In any such interval, between any two poil)ts that belong

to a distinct pair of the subsets r, 1’1 arid  1’2, there exists a third point which

belongs to the subset other than the two in the pair.

Note that since l’, rl and rz are open sets, both of the statements (i)

and (ii) are “stable” numerically, i.e., they can be verified with arbitrarily-

lligll-accuracy nu~nerica]  ca lcula t ions . A l r e a d y  t h e  statc]llerlt (i), combirled

wi th  the observation that 1 and 1’1 are disjoint, proves t}lat  A is nonerllpty:  a

conncc.ted  open interval in R cannot be the unio~i of three disjoint open subsets,

therefore, in any interval of the kind described in (i) there r[lust  exist points

which belong to A. As 1 rcrnarked above, to prove that A satisfies the conditions

FC2 and FC3 of Sect. 5, it is sufficient to combil,c  the exponential instability of

the geodesic flow on l’; S with the cwerywhere-dtnse  topological structure of A,

i.e., the structure of a Cantor set of periodic or quasi-periodic orbits, so that

every open neighborhood of any point 771 E A corltains  points of .A c]ther  than 77L.

‘1’Ilat A indeed has this structure is strongly sugg(:sted  by the numerical evidence

discussed here and more extensively in [4] and [1 O]. IIc}wever, the discovery of

an a[lalytical proof of this topological structure remains a~l oI)en ~)roblem.
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